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Influence of walkoff on pattern formation in nondegenerate optical parametric oscillators
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Convective and absolute nature of instabilities in nondegenerate optical parametric oscillators with large
transverse section, for negative detunings and in the presence of walkoff, is examined. The asymptotic re-
sponse of the signal and idler fields to a transverse localized two-dimensional perturbation is evaluated. The
presence of walkoff breaks the rotational symmetry in the transverse plane, and the system, at the absolute
instability threshold, selects traveling waves propagating in the walkoff direction among an infinity of unstable
spatiotemporal modes. We show that in optical parametric oscillators~OPO’s! with negative detunings, con-
trary to the case of positive detunings, the walkoff shrinks the region of convective instabilities, and even may
suppress the convective/absolute transition. Hence, in a certain range of parameters, signal field envelopes in
the form of wave packets of zero group velocity are found where the instability is absolute at the onset,
although the walkoff is present. We also show that nonlinear pattern selection is ruled by the cross-coupling
terms appearing in the asymmetric coupled Ginzburg-Landau equations derived near-threshold of the signal
and idler generation. The numerical solutions of the original OPO equations confirm the analytical predictions
for the values of the instability thresholds and the corresponding selected patterns.
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I. INTRODUCTION

Pattern formation in extended systems has received a
of attention in fields as different as physics, hydrodynam
chemistry, and biology. The development of such studie
supported by the progress of theoretical methods and is
tivated by practical situations in which this question aris
As far as optics is concerned, progress in the knowledg
pattern-formation mechanisms appears to be necessary t
derstand the behavior of large-area coherent sources su
vertical cavity semiconductor lasers or high-power opti
oscillators. The transverse structure of the beam emitted
these oscillators is a key factor for their practical use. T
structure must be mastered for applications including la
ranging, laser-induced fusion, or optical coherent inform
tion processing.

Transverse patterns in nonlinear optical systems h
been widely studied since the early days of lasers. In the
approaches, a modal decomposition was sufficient to un
stand the experimental observations. By this technique,
laser field is projected on the basis provided by the em
cavity modes. These are Hermite-Gauss or Laguerre-G
modes for open cavities, depending on their symmetry,
guided modes for waveguide and fiber lasers. When
transverse section of the laser beams increases, this de
position requires larger and larger basis sets, and it beco
inadequate for systems with large~about 100! Fresnel num-
bers.

In the global approach used for systems with a la
Fresnel number, the partial differential equations describ
the dynamics in the presence of diffraction have to be solv
Lasers belong to a family of nonlinear continuous syste
where dissipative structures branch out of a homogene
basic state when the external parameter exceeds a cr
1063-651X/2000/63~1!/016604~13!/$15.00 63 0166
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threshold. The distinction between absolute and convec
instabilities in the unstable region is important to elucida
the mechanisms underlying the formation of these dissipa
structures, and, in particular, to separate noise-sustained
terns from those originating from the intrinsic dynamics
the system. In the convectively unstable region, localiz
perturbations grow in a comoving frame, but are drifted o
of the system in the absence of a continuous source of no
In the absolutely unstable region, however, such pertur
tions grow with time at any spatial position, and therefo
affect the system everywhere. In order to characterize
nature of the instability in various different physical system
we give a unified description based on a classification
patterns in terms of the group velocityUc of the most un-
stable mode. ClassI A systems are those characterized by
vanishing ofUc. Consequently, the basic state of these s
tems becomes directly absolutely unstable. Examples
classI A systems are, in optics, optical parametric oscillat
~OPO’s! ~respectively lasers! with positive ~respectively
negative! detuning@1,2#, degenerate OPO’s for both signs
detuning @3#; and in hydrodynamics, the well-know
Rayleigh-Bénard convection, and Taylor vortex flow. Clas
I C systems are those characterized byUcÞ0. These systems
exhibit a region of convective instability. Examples of cla
I C systems are OPO’s~respectively lasers! with negative~re-
spectively positive! detuning, and binary fluid mixture@4#. In
these latter three examples, the system undergoes a
bifurcation to symmetry degenerate left and right traveli
wave patterns.

The question we want to approach now is the influence
an additional effect which breaks the reflection symme
(x↔2x) in the transverse plane supposed present in b
systems classified asI A and I C . Specifically, the knowledge
of how this broken symmetry alters the convective/absol
©2000 The American Physical Society04-1
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nature of the instability in both systems is necessary. T
influence of this additional effect on the spatiotemporal
havior of classI A systems has been the subject of extens
investigations in recent years: namely, the effect of walk
in degenerate OPO’s@5–10# and in nondegenerate OPO
without diffraction @11# and including diffraction@12#. This
optical situation is analogous to that encountered
Rayleigh-Bénard convection and Taylor vortex flow whe
an externally imposed cross flow, is added in both syste
@13#. In OPO’s ~respectively hydrodynamics!, these studies
reveal notably that the walkoff~respectively the imposed
through-flow! creates necessarily a region of convective
stability. Therefore, the nature of the instability chang
from absolute to convective at the onset. These systems
also experience a second transition to absolute instability
yond the onset. We are not aware of similarly extensive st
ies of the influence of this broken symmetry phenomenon
pattern selection in classI C systems. Let us cite two refer
ences dealing with binary fluid convection with add
through-flow in fluid media@14#, as well as in porous medi
@15#.

In this paper, we concentrate on OPO’s in the case
negative detuning which belongs to classI C systems. The
influence of walkoff is investigated and reveals new qual
tive behaviors that are absent in our previous work@12# deal-
ing with OPO’s with positive detuning. The paper is org
nized as follows. In Sec. II, we recall the OPO governi
equations, including walkoff and diffraction effects. Line
stability analysis of these equations is performed as
initial-value problem to obtain both the pump thresholds
the onset of convective and absolute instabilities, and
response of the system to two-dimensional~2D! localized
perturbations. The convective instability criterion allows
to obtain the modulus of wave number at criticality, but the
is still a spatial degeneracy due to all possible orientation
the wave vector. However, the linear absolute instability c
terion shows that in most cases, the OPO selects a mon
mensional structure in the walkoff direction, as was obser
experimentally@16,17#, but there remains a degeneracy b
tween the positive and the negative directions. The poss
transition to mixed mode patterns is then considered. Tak
advantage of the 1D pattern-selection mechanism which
ists in OPO’s in the presence of walkoff, this is achieved
performing analytical studies on the corresponding am
tude equations. Section III deals with this approach to inv
tigate the evolution of wave packets in the unstable reg
The characteristics of the instabilities such as the thresh
and critical wave numbers and frequencies are analytic
obtained with special emphasis on the case of small walk
valid in almost all experimental situations.

Numerical simulations of the full 2D OPO model are ca
ried out to check the validity range of the analytical studi
They are reported in Sec. IV. Concluding remarks are su
marized in the final section.

II. CONVECTIVE VERSUS ABSOLUTE INSTABILITIES
IN OPO’S

A. Model

We start from the standard description@12# of an OPO in
the mean-field approximation. It includes, in addition to t
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transverse Laplacian terms (¹'
2 ) accounting for diffraction,

drift terms (]x) describing walkoff effects:

] tAp5gp@2~11 iDp!Ap1E~x,y!2AsAi1 iap¹'
2 Ap#,

] tAs5gs@2~11 iDs!As1ApAi* 1 ias¹'
2 As2as]xAs#, ~1!

] tAi5g i@2~11 iD i !Ai1ApAs* 1 iai¹'
2 Ai2a i]xAi #,

whereAj with j 5p, s, or i are the normalized slowly vary
ing envelopes for pump, signal, and idler fields, respective
The parametersD j , g j , andaj are the detunings, the cavit
decay rates, and the diffraction coefficients, respectively.E is
the normalized external pump andas,i are the signal and
idler walkoff coefficients, respectively. Note that the abo
governing equations account for a type-I as well as a typ
OPO. For instance, type-II OPO’s considered in@9# are ob-
tained from Eqs.~1! by settinga i50 and keepingas , the
polarization of the idler being, as the pump, ordinary, and
signal extraordinary@9,12#. Equations~1! have a homoge-
neous trivial time-independent~OPO OFF! solution:

Ap5E/~11 iDp!5m, As50, Ai50, ~2!

and, a nontrivial one which exists only above thresholdm
.1).

It is convenient to rewrite Eqs.~1! in terms of the devia-
tions from the equilibriumB5Ap2m, As , Ai which obey
the following system:

] tB5gp@2~11 iDp!B1 iap¹'
2 B2AsAi #,

] tAs5gs@2~11 iDs!As1mAi* 1ias¹'
2As2as]xAs1Ai*B#,

~3!

] tAi* 5g i@2~12 iD i !Ai* 1mAs2iai¹'
2Ai*2ai]xAi*1AsB* #.

B. Linear stability analysis, dispersion relation,
and normal modes

The linear stability analysis is performed by linearizin
Eqs.~3! around the basic~OPO OFF! state~2! and consider-
ing normal modes solutions of the formeikxx1 ikyy2 ivt, where
k5(kx ,ky) is the real transverse wave vector andv the
complex frequency of the linear problem.

The pump variation is linearly decoupled from those
the signal and the idler, and the dispersion relation as
tained after straightforward calculations is

D~kx ,k2,v!5v21 i ~bs1bi !v2bsbi1gsg im
250, ~4!

where we have set

bs5gs@11 i ~Ds1ask
21askx!#,

bi5g i@12 i ~D i1aik
22a ikx!#,

k25kx
21ky

2 .
4-2
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The dispersion relation yields the neutral stability surfa
@ Im(v)50# in the 2D plane of the wave-vector componen
(kx ,ky) in the form

m~kx ,ky!5S 11
@D2a2/4a1a~kx1a/2a!21aky

2#2

~gs1g i !
2 D 1/2

~5!

with a frequency

v~kx ,ky!5
gsg i

gs1g i
@Ds2D i1~as2ai !k

21~as1a i !kx#,

where we have seta5gsas1g iai , D5gsDs1g iD i , anda
5gsas2g ia i . In the presence of walkoff, the critical su

FIG. 1. The coupling effect between walkoff and diffractio
breaks the rotational symmetry in the transverse plane.~a! Projec-
tion of the neutral stability surface on the (m,kx) plane.~b! Plot of
the critical wave-vector components at the onset of instabilitym
5mc51). Walkoff shifts the circle of unstable transverse wa
vectors. Signal walkoff parameter isas50.27 for the solid curves
andas50 for the dashed ones. The fixed values, for all figures
the other parameters aregs5g i51, Ds5D i520.14, as50.5, ai

50.42, anda i50.
01660
e

face ~5! depends on both components of the wave vec
(kx ,ky), and cannot be reduced to a simple dependence
the wave-vector modulusm(k2), as is the case withou
walkoff @see Fig. 1~a! for a projection of this surface on th
plane (m,kx)]. The stability analysis for the caseD.0 has
been performed in@12#. In the sequel we will mainly focus
on the caseD,0.

The onset of instability at critical thresholdm5mc51 is
obtained for wave vectors minimizingm in Eq. ~5! which are
given by

~kx
c1a/2a!21~ky

c!25
a224aD

4a2
. ~6!

The critical real wave vectorskc5(kx
c ,ky

c) belong to a circle
@solid curve of Fig. 1~b!# centered at (kx52a/2a,ky50)
with a radiusR5AD/2a, andD5a224aD. As indicated by
the nonzero value ofkx , the rotational symmetry is broke
by an amount2a/2a depending on the competition betwee
walkoff and diffraction weighted by the cavity losses. No
that when walkoff vanishes@1#, the circle~6! of critical wave
vectors is centered onk50, with (kc)25(kx

c)21(ky
c)2

52D/a @dashed curve of Fig. 1~b!#. The basic state~2! is
linearly unstable to all 2D transverse modes lying on
circle ~6!. Contrarily to the case of positive effective detu
ing D, where walkoff selects at threshold a 1D structure e
panding in its direction@12#, this 1D selection mechanism
fails for D,0.

C. Response to localized perturbations

The linear stability analysis, given above, is based on
normal mode theory, i.e., it checks the stability with resp
to extended perturbations. Such an approach is insufficien
determine the linear response of the system to any local
perturbation. This is provided by solving the linear initia
value problem:

] tAs2gs@2~11 iDs!As1mAi* 1 ias¹'
2 As2as]xAs#

5As
(0)d~x!d~y!d~ t !,

~7!
] tAi* 2g i@2~12 iD i !Ai* 1mAs2 iai¹'

2 Ai* 2a i]xAi* #

5Ai*
(0)d~x!d~y!d~ t !.

The left-hand side is the linearized part of Eqs.~1! around
the steady-state solution~2!. The forcing terms added to th
right-hand side of Eqs.~7! represent a localized initial im
pulse forAs and Ai* , d being the Dirac function. Problem
~7! can be solved using Fourier transforms in space (x,y)
and the Laplace transform in timet, defined by

F̂~kx ,ky ,v!5E
2`

1`E
2`

1`E
0

1`

F~x,y,t !

3ei (vt2kxx2kyy)dx dy dt, ~8!

whereF5(As ,Ai* ,As
(0) ,Ai*

(0))T.

f

4-3
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After solving the problem in Fourier space, and perfor
ing the Laplace transform by the residue theorem, the s
tion As(x,y,t) may be written as

As~x,y,t !52
i

4p2 (
n51

2 E
2`

1`E
2`

1` Sn~vn ,kx ,ky!

]D

]v
~vn ,kx ,ky!

3e2 i (vnt2kxx2kyy) dkxdky ~9!

with Sn(vn ,kx ,ky)5Âs
(0)$ ivn1g i@2(12 iD i)1 iaik

2

2 ia ikx#%2gsmÂi*
(0) , andvn (n51,2) are the two complex

frequency modes solution of the dispersion relation~4!. The
mode, with the largest growth rate is the one which fi
absolutely destabilizes the system. Thus we shall now c
sider only this most destabilizing mode, whose frequency
will refer to asv. The emerging signal patternAs(x,y,t) is
obtained by the asymptotic evaluation, ast tends to infinity,
of the solution~9! along the raysx/t5U, y/t5V for all
constant values ofU and V. Note that it is necessary to in
cludex/t andy/t terms in order to allow the transverse poi
in

e

he
ue
ec

n
lu
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(x,y) to be large ast becomes large, so that one may follo
a propagating perturbation. If the solutionAs(x,y,t) is un-
bounded ast→`, the system is linearly unstable, and th
we have to distinguish between two types of instabilitie
Any instability along a ray with (U,V)5(0,0) grows in time
in situ and invades the whole spatial domain: it is call
‘‘absolute.’’ Any instability along a ray with (U,V)Þ(0,0)
grows in time but is drifted away: it is called ‘‘convective.
Asymptotic expansions of the integral~9! can be obtained by
applying the method of the steepest descent@18#. It consists,
in particular, in deforming the real wave-vectork contour of
integration in Eq.~9! into the two complex planeskx andky
without changing the value of the integral. The domina
part of the integrand arises in the region of the saddle p
(kx

s ,ky
s) defined by

]v

]kx
5U and

]v

]ky
5V. ~10!

The shape of the signal response to the initial pulse per
bation is given in its dominant form by
As~x,y,t !;2
i

2pt

S„v~kx
s ,ky

s!,kx
s ,ky

s
…ei (kx

sU1ky
sV2v)t

]D

]v
„kx

s ,ky
s ,v~kx

s ,ky
s!…F S ]2v

]kx]ky
D 2

2
]2v

]kx
2

]2v

]ky
2 G

(k
x
s ,k

y
s)

1/2 .
a
ed

n
r

The necessary, but not sufficient, condition for absolute
stability is the existence of a saddle point of frequencyv
5v(kx

s ,ky
s) in the two complexkx and ky planes for some

complexv (0) with Im(v (0)).0 andU5V50. However, for
sufficiency, it is required that the spatial branches in each
the complexkx andky planes, which are the solutions of th
dispersion relation~4!, originate from the realkx axis andky
axis. This is the so-called pinching condition@19#. These two
points are investigated in the following. First, we look for t
necessary condition, which provides us with possible val
for the absolute instability threshold, and second we ch
the pinching condition for sufficiency.

Thus, the first step is to investigate the emergent sig
~idler! pattern characteristics corresponding to the abso
instability atU5V50, by solving

]v

]kx
5kxF~k,kx!1G~k,kx!5U, ~11!

]v

]ky
5kyF~k,kx!5V, ~12!

with the v solution of Eq.~4!:

2v~k,kx!5āk21ākx1D̄2 i ~gs1g i !1 iR1/2, ~13!
-

of

s
k

al
te

where

F5ā1a@g i2gs2 i ~ak21akx1D!#/R1/2,

2G5ā1a@g i2gs2 i ~ak21akx1D!#/R1/2,

R54gsg im
21@g i2gs2 i ~ak21akx1D!#2,

and

ā5gsas2g iai ,

D̄5gsDs2g iD i ,

ā5gsas1g ia i .

As can be seen from Eq.~12!, V50 when ky50 or
F(k,kx)50. If kyÞ0, then the condition (U,V)5(0,0) is
fulfilled when F(k,kx)5G(k,kx)50 which, after straight-
forward calculations, statesasa i1aias50. Note that this
coupling between drift and diffraction effects reduces to
vanishing walkoff condition in frequency-degenerat
OPO’s with negative signal detunings@5#. The condition
asa i1aias50 requires very specific values of diffractio
and walkoff, which are difficult to obtain experimentally. Fo
the generic caseasa i1aiasÞ0 ~which is always true in the
4-4
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case of degenerate OPO’s with walkoff whereas5ai and
as5a i), and then (U,V)5(0,0) is satisfied forky50. This
means that the system selects the traveling waves prop
ing in the walkoff direction~x! among an infinity of unstable
spatiotemporal modes. Two traveling waves~TW! with two
different frequenciesv6

(0) and wave vectors (kx
s6 ,0) are se-

lected at the different thresholds of absolute instability.
determine these thresholds@mabs

6 5m(kx
s6)#, Eqs. ~11! and

~12!, together with Im(v (0))50 and U5V50, have been
numerically solved with a Newton-Raphson algorithm for
complexks5(kx

s,0). The result of this integration (mabs
6 ) is

depicted in Fig. 2, which will be discussed in detail once
sufficient condition for absolute instability is verified.

The second step is to check that the frequencies of th
two TW correspond to a pinching point in thekx complex
plane, i.e., the sufficient condition. To do this, we setky

50 in Eq. ~13! and, by expanding it, obtain a fourth-degr
polynomial ofkx . We then numerically solve it in the com
plex kx plane by a Gauss-Laguerre method for different v
ues of the pump parameter in the vicinity of the saddle po
corresponding toas50.27.

For a given value of the pump parameterm, the solution
of the dispersion relation~4! forms four branches in thekx

space. The four branches for different values of the pu
parameterm are depicted in Fig. 3. As the pump paramete
increased, two branches emerge from the lower and from
upper half-planes, pinch below the real wave-vector a
when the saddle-point value is reached, and, finally,
usual exchange of branch identities is observed, as show
Fig. 3. Note that the pinching condition is satisfied for bo
modesv2

(0) @Fig. 3~c!# andv1
(0) @Fig. 3~e!#. All saddle points

we have numerically checked verify this sufficient conditio

FIG. 2. Dependence of the pump parameterm versus signal
walkoff as at instability thresholds: solid curve formabs

2 and dashed
curve formabs

1 ; both are obtained from the OPO dispersion relatio
Open circles are the Ginzburg-Landau approximation. The O
OFF solution is stable form,mc51, convectively unstable for
mc,m,mabs

2 , and absolutely unstable form.mabs
2 . The convective

and absolute thresholds degenerate (mc5mabs
2 ) at a critical value

as
c : the system is then never convectively unstable.
01660
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D. Discussion of the results

Let us now discuss the connection between our anal
and the mechanism of the transverse pattern formation w
the pump parameter is varied. The variations of the abso
thresholdsmabs

6 for both modesv1 and v2 are plotted in
Fig. 2 versus the walkoff parameteras in the case of a
type-II OPO. They call for the following comments.

~i! mabs
2 ~solid curve! exhibits a nontrivial dependence o

walkoff in OPO’s with negative detunings. The threshol
for absolute instabilities depend on a competition betwe
walkoff and diffraction contrary to the threshold for conve
tive instability mc51, which is independent of walkoff. The
mode with frequencyv2 becomes absolutely unstable fir
regardless of the walkoff value. Thus at onset of the abso
instability, the system selects a TW propagating in t
walkoff direction with a frequencyv2

(0) and a wave numbe

.
O

FIG. 3. Thev i50 contours of the dispersion relation~4! are
plotted in the complexkx plane for increasing values of the pum
parameterm. ~a! A contour with four branches is obtained form
50.5,mabs

2 , ~b! m50.9,mabs
2 : the four branches are deformed.~c!

m5mabs
2 51.0075: the branches ‘‘pinch’’ below the real axis fork

5kabs
2 5(20.82,20.16). Note that Re(kabs

2 ) is negative.~d! mabs
2

,m51.02,mabs
1 : the branches split and separate after pinching.~e!

m5mabs
1 51.038: the pinching condition is fulfilled fork5kabs

1

5(10.62,20.33). Note that Re(kabs
1 ) is positive. ~f! m51.5: the

branches split and separate again after pinching.
4-5
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ks(v2
(0)). Note that this is different~except fora50) from

type-II degenerate OPO’s as studied by Izu`s et al. @9#, where
both modes have the same absolute threshold.

~ii ! There exists a critical walkoff valueas
c with particular

properties. It corresponds to the minimum value ofmabs
2 ,

which is then equal to unity. This means that foras5as
c ,

both absolute and convective instability thresholds coinc
At this point, the OPO OFF state becomes directly absolu
unstable with no transition through a convective instabi
region as is observed for other values of the walkoff. T
may be interpreted as the point of the strongest competi
between walkoff and diffraction.

For a,as
c , the purely convective region (1,m,mabs

2 )
shrinks asas is increased, meaning that the walkoff counte
balances diffraction, as far as instability thresholds are c
cerned. This occurs through a reduction ofmabs

2 , i.e., a low-
ering of the absolute instability threshold. Fora.as

c , the
absolute instability threshold increases withas , this is a pa-
rameter region where walkoff dominates diffraction.

In the general case of OPO’s of both types, this occurs
parameter valuesD, a j , andaj linked by a relation analyti-
cally obtained by stating that at this point the group veloc
of the most unstable mode vanishes, i.e., (]v/]k)uk5kc

50.
This leads to the parameter relation

Dc52$2a~ai2as!1a~as1a i !%
~as1a i !

4~ai2as!
2

,

which is valid only forasÞai .
Note that in all these expressions, the diffraction con

bution is proportional to the difference between diffracti
coefficients of the idler and signal fields (ai2as). Therefore,
it is expected that features such as the convective regio
the absence of walkoff disappear in degenerate OPO’s w
as5ai . This is similar to previous works on OPO’s an
degenerate OPO’s in the absence of walkoff. For instan
Sanchez-Morcilloet al. @20# showed that in OPO’s the loca
ized structures have zero group velocity whenas5ai .

To summarize, in the general case, the existence of a
vectively unstable regime stems from a complex competit
between walkoff (a) and diffraction (ai2as).

~iii ! In the intermediate regionmabs
2 ,m,mabs

1 , it is ex-
pected that there will be a competition between the 1D
solute v2 mode and the convective instability of thev1

mode since the pump parameter exceeds the threshold v
for both these instabilities. To understand how the sys
destabilizes in these conditions, it is necessary to study
dynamics of the wave packets emerging from both transv
modesv2 andv1.

III. EVOLUTION OF WAVE PACKETS
IN THE UNSTABLE REGION

In the unstable regime, localized perturbations grow
space and time in the form of wave packets. Their evolut
is characterized by their group velocity and their leading a
trailing front velocities. The relevant wave packets are
ones which first destabilize the system and spread the fas
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These relevant velocities can be obtained from the gro
rate of unstable wave packets.

In this section, we first investigate the wave-packet pro
gation in the unstable regime and determine which mode
absolutely destabilizes the system, i.e., the first to hav
vanishing leading front velocity. Second, nonlinear select
between the most unstable 1D modes is analyzed in term
coupled amplitude equations, derived near threshold.
show that, in particular, nonlinear interaction prevents
occurrence of any mixed modes in the absolutely unsta
regime.

A. Linear analysis of transverse wave packets

We restrict ourselves here to the case of wave pac
with a positive growth rate (s>0), i.e., above critical
threshold (m.mc). Note that the temporal growth rates of
the wave packet can easily be obtained from Eq.~9! as s
5v i2Im(kx)U2Im(ky)V. It takes into account, in addition
to the usual temporal growth termv i , spatial contribution
terms where the propagation velocity (U,V) of a wave
packet has an important role in the unstable region (s>0).
Let us recall that when the instability is convective, then t
origin (U,V)5(0,0) does not belong to the unstable wa
packet. The instability becomes absolute when the w
packet spreads but at least one spatial mode has a vanis
front velocity (U,V). It is thus natural to determine th
convective/absolute nature of an unstable wave packe
characterizing the evolution of its temporal growth rate in t
(U,V) plane. The critical velocities of the most destabilizin
wave packets, at criticality (m5mc) where they reach thei
greatest growth rate, are defined bysmax

5s„vc ,kc ,(Uc ,Vc)… with (Uc ,Vc)5 →
grad

kv r uc . After simple
calculations, they are analytically given by

FIG. 4. The maximum growth rate (smax.0) vs the group ve-
locity (U,V) is depicted by the dashed line for a given pump p
rameter. The regions of convectively unstable 1D wave pack
delimited by the solid line circles250 (s150) centered on
Uc

2 (Uc
1) are also shown.
4-6
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vc5H ~Uc ,Vc! such that~Uc2Uc
0!21Vc

2

5Rc
25@~as2ai !/t#2S D

4a2D J ,

whereUc
05gsg i(asa i1aias)/(asgs1aig i). The setvc cor-

responds, in the plane (U,V), to a circle centered at (U
5Uc

0 ,V50) and with a radiusRc . For fixed parameters, a
thresholdm5mc , each point on the circle represents a d
fined group velocity from which 2D wave packets emer
for m.mc . These group velocities, in the presence
walkoff, are at unequal distances from the origin (U,V)
5(0,0). Form.mc , the unstable wave packets expand,
the unstable region (s>0), and their trailing fronts are lim-
ited by the zero growth rates50. Figure 4 shows, in the
(U,V) plane, the circle (vc) of critical velocities. Only the
emerging wave packets from the two 1D modeskc

6

5(kc
6,0) are shown, for clarity. Their respective conve

tively unstable regions@s>0 and (U,V)Þ(0,0)] limited by
the circless65s(kc

6)50 are also shown. When increasin
the value ofm abovemc , one of the infinity of wave packet
centered on the circle (vc) will reach the origin first leading
to the onset of absolute instability. As a consequence,
selected wave packet is the one closest to the origin, whic
the one with the smallest group velocity on theUc axis with

FIG. 5. Transition from convective to absolute instability of t
two most unstable 1D wave packets of Fig. 4 is illustrated,
different values of the pump parameterm, in the (U,V) plane.~a!
m,mabs

2 reproducing the two small circles of Fig. 4.~b! At m
5mabs

2 , one of the circles (s2) touches the origin: the system be
comes absolutely unstable.~c! mabs

2 ,m51.02,mabs
1 for all values

of (U,V) inside the circle (s2), the system is absolutely unstabl
~d! m5mabs

1 51.1 and the circle (s1) in turn touches the origin
leading to the absolute instability of the second transverse m
v1.
01660
-

f

-

e
is

Vc50. Hence, the most absolutely unstable mode is tha
the two modeskc

65(kc
6,0) having the smaller velocityUc

6

~see Fig. 4!. Therefore, among all 2D convective unstab
modes, above critical threshold (m.mc), one may only deal
with those active modes lying near the 1D critical mod
kc

65(kc
6,0) parallel to the walkoff. We will thus carry out

2D analytical study of the propagating wave packets, res
ing from the competition between these 1D transverse mo
given by

kc
65~kc

6,0! with kc
65~2a6AD !/2a,

~14!

vc
65v02Uc

0kc
6 ,

with v05@D i2Ds1(as2ai)D/a#/2t5vc
6(as5a i50).

The maximum growth ratesmax is reached forUc
65Uc

0

6(as2ai)AD/2at while Vc
650. To determine the front ve

locity U, we once again use the Newton-Raphson algorith
Figure 5 shows the result of the integration of the OPO d
persion relation~4! under the conditions50, in the plane
(U,V), and for increasing values of the pump parameterm.
At threshold of convective instability (m5mc), smax50 and
corresponds to two points~crosses in Fig. 5! in the plane
(U,V). Above onset atm.mc , smax is positive and all posi-
tive s such that 0,s,smax belong to the disks delimited by
s50 circles. The velocities (U* ,V* ) corresponding tos
50 represent 2D fronts of the perturbations, so along th
rays (x/t5U* andy/t5V* ) the system is marginally stable
At some pump parameterm5mabs.mc , U* 5V* 50, and
the system becomes absolutely unstable@Fig. 5~b! and Fig.
5~d!#. It is clear that the modev2 becomes absolutely un
stable before the modev1 as can be seen from these figure

The curves in Fig. 5~b! and Fig. 5~c! also show that while
the modev2 is absolutely unstable, the modev1 is still
convectively unstable since the corresponding disk does
contain the origin. Form.mabs

1 , the system is absolutely
unstable with respect to the two modesv1 and v2 @Fig.
5~d!#. The fastest front velocity linearly takes over the d
namics of the system.

In order to study the nonlinear coupling between the
two modes, we derive amplitude equations close to criti
threshold. We restrict ourselves to a 1D weakly nonline
analysis of these two modes, since the first mode to be
solutely selected is 1D, and is the first to be affected by
nonlinear saturation.

B. Nonlinear wave-packet selection

The wave packets centered on the unstable modesvc
1 and

vc
2 can be characterized as plane wavesS6(x,t)expi(kc

6x
2vc

6t), respectively, with complex amplitudesS6(x,t)
which may be slowly modulated in space and time. T
weakly nonlinear dynamics of these wave packets can
described by a set of two coupled complex Ginzburg-Land
equations~CCGLE! for the amplitudesS6 ~see the Appendix
for details!. Their 1D version reads

r

de
4-7
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t~] t1Uc
1]x!S15~m21!S11~d11 id2!]x

2S1

2@NuS1u21~N1C1!uS2u2#S1 ,

~15!

t~] t1Uc
2]x!S25~m21!S21~d11 id2!]x

2S2

2@NuS2u21~N1C2!uS1u2#S2 ,

~16!

with all coefficients defined in the Appendix.
Note that contrary to the classical CCGLE, the prese

of the walkoff, which breaks the reflection symmetry (x↔
2x), compels the group velocities (Uc

6) and the nonlinear
cross-coupling terms (N1C6) to take different values for
each mode (S1 andS2). We first calculate the boundary fo
absolute instability within the context of linear parts of Eq
~15! and ~16!. This linear problem can be solved by exa
integration for an initial condition of the formS6(x,t50)
5d(x) ~a Dirac function!, giving for t.0 @21#

S65F4p

t
~d11id2!tG21/2

3expFm21

t
t2t~d12 id2!

~x2Uc
6t !2

4~d1
21d2

2!t
G . ~17!

In the limit of long time behavior, the growth rates6 of
the amplitudesS6 for any positionx reads

s65
m21

t
2td1

~x/t2Uc
6!2

4~d1
21d2

2!
. ~18!

In the frame moving at velocity (x/t)65Uc
6 , the ampli-

tudesS6 are dominated by the most unstable modes with
maximum growth rates6

max reducing to (m21)/t. A wave
packet that eventually grows in some frame is confined
tween two rays on which the growth rate is zero. In order
obtain the absolute instability boundary, we takes50 at a
fixed point ~i.e., x/t50). The onset for absolute instabilit
then reads

mabs
6 511

t2d1

4~d1
21d2

2!
~Uc

6!2. ~19!

The boundarymabs
6 is plotted versusas as open circles in

the stability diagram of Fig. 2. As can be seen from this p
the CCGLE approximation is valid in the whole range
accepted values of walkoff and the accuracy is excellent
small ones.

In order to determine the wave number and the freque
of the two respective modes at their absolute threshold,
perform a saddle-point analysis@12# in the context of linear
parts of Eqs.~15! and ~16!. A straightforward calculation
leads to
01660
e
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t

e

-
o
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ks
65kc

62
t~d11 id2!Uc

6

2~d1
21d2

2!
, ~20!

vs
65vc

62
t~Uc

6!2

4~d1
21d2

2!
, ~21!

with kc
65(2a6AD)/2a andvc

65v02kc
6Uc

0 .
A short inspection of the relations~19!–~21! and of the

stability diagram of Fig. 2 shows that when the walkoff va
ishes, the two modesS1 and S2 simultaneously become
absolutely unstable. They correspond to traveling wa
propagating in opposite directions with velocitiesUc

6(as

5a i50)56(as2ai)AD/(2ta). So we can say that the
system exhibits bicritical absolute instability. In the presen
of walkoff, this bicriticality persists for degenerate OPO
whereas5ai @9#. These systems may exhibit at the absolu
instability threshold, according to the linear analysis, tw
traveling waves propagating in the same direction with
same velocity Uc

6(as5ai)5Uc
05gsg i(asa i1aias)/(asgs

1aig i) but different wave numbers and frequencies. T
situation is qualitatively different for OPO’s. The presence
walkoff breaks the bicritical nature of the absolute instabil
and the two modesS1 and S2 may appear at different ab
solute instability thresholds~Fig. 2!. The physical parameter
chosen in the numerical simulations imply that the modeS2

appears first~i.e., mabs
2 ,mabs

1 ). All these predictions are as
sociated with the linear properties in the sense that only
nature of the instability of the trivial homogeneous and tim
independent solution~OPO OFF! was investigated. A non-
linear analysis is required to clarify which pattern may
selected when the system becomes absolutely unsta
Equations ~15! and ~16! admit spatially uniform, time-
independent solutions: (0,0), (S2

s ,0), (0,S1
s ), and the mixed

mode (S2
m ,S1

m), such that uS2
s u25uS1

s u25(m21)/N and
uS2

mu25(m21)C2/@N(C11C2)1C2C1#; uS1
mu2

5uS2
mu2C1/C2. We note thatC1 and C2 are different, so

that the system does not allow for standing waves. The ab
linear spatiotemporal analysis showed that the trivial st
(0,0) becomes absolutely unstable whenm.mabs

2 . As a con-
sequence, the traveling wave with the amplitudeS2 spreads
over the whole spatial domain. As the pumping is increas
the question of the transition from this traveling wave to t
mixed ones with amplitudes (S2

m ,S1
m) remains. The study of

the stability of the mode (S2
s ,0) with respect to mixed mode

is then required. It is done by introducing the perturbed a
plitudes S2(x,t)5S2

s 1dS2
s (x,t) and S1(x,t)5dS1(x,t),

and performing a linear stability analysis. This leads to t
eigenvalues, which can be related to amplitude and ph
disturbances, respectively. The amplitude ones never de
bilize S2(x,t) since their growth ratesamp522(m
21)/(Nt) is negative. The growth rate of the phase dist
bancessw52(Nd1 /t)q22O(q4) is also negative (q being
the wave number of the perturbation!. Therefore, the system
does not experience the Benjamin-Feir instability. Up
now, we have considered a traveling wave with wave nu
ber k5kc

2 ~i.e., S2
s is homogeneous!. If the wave numberk
4-8
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FIG. 6. Time evolution of the near-field signal amplitude obtained from the integration of the full 2D OPO model. The pump pa
value is that of point~a! in Fig. 2, where the system is convectively unstable.
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is allowed to vary (kÞkc), we expect that the traveling wav
may experience the Eckhaus and zigzag instabilities.
study of the convective or absolute nature of these secon
instabilities is worth addressing. Work in this direction is
progress. Thus the stability of the mode (S2

s ,0) depends only
on the stability of the traveling waveS1(x,t). By linearizing
Eq. ~15!, one gets

t~] t1Uc
1]x!dS1~x,t !5~m21!dS1~x,t !

1~d11 id2!]x
2dS1~x,t !

2~N1C1!uS2
s u2dS1~x,t !.

If we consider the expression ofuS2
s u25(m21)/N, the ef-

fective growth rate of dS1(x,t) is found to be (m
21)(2C1/tN). We note that the presence of the cros
coupling term (C1) leads to a nonlinear negative growth ra
for the modeS1 . Therefore, we do not expect any transitio
from the S2

s mode to the mixed mode in this problem
Hence, the upper curve in Fig. 2 has no physical mean
because it does not take into account the nonlinear inte
01660
e
ry

-

g
c-

tion between the two unstable modes. We finally state t
this nonlinear selection and the importance of the coupl
terms in Eqs.~15! and ~16! also hold for the bicritical abso
lute instability present in particular, in degenerate OPO
Indeed, if for a range of initial conditions one of the tw
modes is excited and spreads over the whole spatial dom
no transition to the mixed modes is predicted by our non
ear stability analysis. This result is consistent with numeri
simulations of degenerate OPO equations reported in@9#.

IV. NUMERICAL RESULTS

In this section, we numerically investigate the validity
our predictions by integrating the full 2D OPO model@Eqs.
~1!# above the critical threshold (m5mc). For the integration
we use the same scheme as in@8#. We just recall here that the
integration is based on a variable-step fourth-order Run
Kutta algorithm for the temporal evolution in normalizedgs
units. The variables are developed on a 2563256 grid of 240
spatial units, performing the diffraction terms calculation
means of a fast Fourier transformation intok5(kx ,ky) space
and back. For the external pump, we used a Gaussian b
FIG. 7. Time evolution of the signal field pattern in the absolutely unstable regime@point ~c! in Fig. 2#. ~1! Amplitude time evolution in
the real transverse plane~near-field!. ~2! The far-field evolution. Note that the wave vector selected is negative.~3! Phase pattern evolution
towards a stripe pattern.
4-9
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of maximum amplitudeE0 and with a waist of 112 units
while the signal and idler fields are generated starting fr
random initial conditions@8#. The evolution of the transvers
dynamics is computed for a fixed signal and idler pair
walkoff parametersas and a i and various pump paramete
values above the instability threshold. The numerical so
tions presented here are obtained for a type-II OPO w
as50.27 anda i50. The choice of the value ofas corre-
sponds to a walkoff angle of about 0.1 mrad for the sig
field and was discussed in@8# in connection with experi-
ments. The remaining parameters are set togp5gs5g i51,
Dp52, Ds5D i520.14, ap50.23, as50.5, andai50.42.

Here we have reported three series of numerical solut
of Eqs.~1! representative of the three qualitatively differe
regions of Fig. 2, namely~i! mc51,m,mabs

2 , where the
OPO is convectively unstable;~ii ! mabs

2 ,m,mabs
1 , where the

system is globally absolutely unstable with respect to thev2

mode; and~iii ! m.mabs
1 , where both transverse modes a

linearly absolutely unstable. In the first region~i! and for
E052.24 @corresponding tom.1.002, point~a! in Fig. 2#,
the temporal evolution of the signal field pattern is shown
Fig. 6, starting from random initial conditions. In the tra
sient regime (t&600), we observe the random formation
domains in the amplitude of the signal field where all line
active modes are present. Later, the defects or inhom

FIG. 8. The asymptotic signal field (t53000) for m51.05
.mabs

1 is plotted.~1! Near field,~2! far field, and~3! phase pattern.
Note that the numerically selected wave vector in~2! is negative, as
predicted by the nonlinear stability analysis.
01660
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neous wave packets which are randomly distributed in
signal amplitude propagate from the left to the right in t
direction of the walkoff, i.e., in one direction only, and a
drifted outside the transverse pump section giving rise
long time (t53000), to a front which eventually disappear

By further increasing the pump parameter, we enter
region ~ii ! where the modev2 is absolutely unstable, a
shown in Fig. 7, forE052.28 @m.1.02.mabs

2 ; point ~b! in
Fig. 2#. The most significant feature is that the genera
transverse signal beam~upper row! extends asymptotically
all over the pump transverse section, therefore increasing
OPO efficiency together with the energy conversion from
pump to the signal. The far-field~middle row! and the phase
pattern~bottom row! evolution are also shown in this figure
The formation of the ring of linearly unstable transver
modes in the far-field and the corresponding phase patter
seen for early time development (t&600). The further time
evolution (600&t&1600) shows the nonlinear selectio
where only those 2D modes lying near the most absolu
unstable modev2 are still active, as predicted in Sec. III. A
can be seen from the figure, the asymptotic state corresp
to a signal field with homogeneous amplitude and a ph
stripe pattern, perpendicular to the walkoff direction. T
wave number of the stripe pattern is equal to that predic
@see Fig. 3~c!# by the linear absolute stability analysis.

When the pump parameterm exceeds the absolute thres
old mabs

1 of the modev1, the linear stability analysis state
that both modes with negative~respectively positive! wave
number for thev2 (v1) mode could develop, as shown i
Fig. 3~c! @respectively Fig. 3~e!#. A typical asymptotic nu-
merical solution is depicted in Fig. 8 for a pump parame
valueE052.35 @m.1.05; point~c! in Fig. 2# above the ab-
solute thresholdmabs

1 . The OFF state is destabilized all ove
the transverse profile and the OPO emits a circular bri
spot. Note that on the far-field image of Fig. 8, the wa
number is negative. This is in agreement with the nonlin
analysis, which predicts that even in the region where
modev1 is linearly absolutelyunstable, it is the modev2

which is selected. Indeed, once the first unstable mode (v2)
is present, it inhibits all other linearly active modes. T
emerging pattern depends strongly on the nonlinear inte
tion among all active modes. This is exactly what we ha
observed in Fig. 8. Let us recall that this is different from t
case of degenerate OPO’s where both modes (v2 andv1)
have the same linear absolute growth rate, which is sele
depending only on the initial conditions@9#.

V. CONCLUSION

Transverse pattern formation in OPO’s as a response
2D localized perturbation has been examined. As far as
consider localized perturbations, the transverse asymp
form of the signal is given by the ‘‘modes’’ evaluated wit
complex wave vectors, and not with real-valued wave v
tors. These wave vectors correspond to the saddle poin
the OPO dispersion relation. It turns out that, at the onse
instability, in nondegenerate OPO’s, a ring of wave vect
is excited giving rise to propagating wave packets but w
different group velocities. In the absence of a noise sour
4-10
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these wave packets are drifted outside the transverse
section of the pump field which is at rest and no long-te
pattern is observed. The system settles back to the basic
~OPO OFF!. A small increase in the pump parameter brin
the system into an absolutely unstable regime where
group velocity vanishes for, at least, one of the wave pac
which grows in place invading the whole available tran
verse section. Two parameters play a key role in the res
tive position of the thresholds, namely the walkoff parame
and the diffraction asymmetryai2as . Walkoff is known to
introduce a drift, but it is important to mention the counte
drift due to diffraction asymmetry. In particular, the conve
tive instability region may disappear when this diffractio
asymmetry compensates for walkoff. We have also dem
strated that the system selects only two asymmetric 1D
tial structures, with different wave vectors aligned in t
walkoff direction, but with two distinct absolute threshold
Because of the nonlinear interaction of these two mod
only one of them~the one with the lower linear absolut
threshold! is systematically selected, irrespective of the i
tial conditions. All analytical predictions have been co
firmed by integrating numerically the full 2D OPO model

We have limited this work to primary instabilities. How
ever, in a certain range of parameters, the wave packets
be destabilized either in phase or in amplitude and secon
instabilities should be investigated. In particular, the imp
of convective and absolute instabilities on the thresholds
Eckhaus and zigzag instabilities is worth examining in or
ca

01660
ain

ate
s
e
ts
-
c-
r

-

n-
a-

s,

-
-

ay
ry
t
f
r

to understand the pattern formation of OPO’s for higher v
ues of the pump parameter. Work in this direction is
progress.
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APPENDIX

In the following, we present the derivation of the coupl
Ginzburg-Landau amplitude equations from the mean-fi
model of the OPO. For this purpose, it is worthwhile to wr
the OPO equations~1! in the compact notation

] tV5LV1N, ~A1!

where the vectorV5(B,As ,Ai* )T contains the three field
variables, * stands for the complex conjugate, andL is the
linear operator of the system,
L5S 2gp~11 iDp!1 igpap¹'
2 0 0

0 2gs~11 iDs!1 igsas¹'
2 2gsas]x mgs

0 mg i 2g i~12 iD i !2 ig iai¹'
2 2g ia i]x

D .
r

d

N is the nonlinear operator,

N5S 2gpAsAi

gsAi* B

g iAsB*
D .

At threshold ~for D5gsDs1g iD i,0), the linear stability
analysis@12# shows that the OPO presents a supercriti
bifurcation atm5mc51 to a nonhomogeneous state (kc ,vc)
defined by

kc
656

AD

2a
2

a

2a
,

vc5vc
(0)2Uc

0kc
6 ,

where we have seta5asgs2a ig i , a5asgs1aig i , andD
5a224aD in the first equation. In the second one,vc

(0)

5gsg i@D i2Ds2D(ai2as)/a#/(gs1g i) is the critical fre-
quency in the absence of walkoff andUc

05gsg i(asa i
l

1aias)/a. Above threshold, we introduce a small paramete«
which measures the distance to criticality by settingm2mc
5«2m2, wherem2 is of order unity. This fixes the spatial an
temporal scalings to~see Refs.@1,12#!

x5X01«X,

y5Y01A«Y, ~A2!

t5T01«T11«2T21•••.

Temporal and spatial derivatives in Eqs.~1! are then replaced
by

] t5]T0
1«]T1

1«2]T2
,

]x5]X0
1«]X , ~A3!

]y5]Y0
1A«]Y .
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The evolution equations for the field variables are obtain
by expanding the solutionV in power series of«:

V5«V(1)1«2V(2)1«3V(3)
•••. ~A4!
01660
dThe functionsV( i ) depend on the slow variablesX, Y, T1,
andT2. By substituting the expansion~A4! and the relations
~A3! and~A2! in Eqs.~1!, and then collecting coefficients o
like powers of«, the following equations are obtained:
~]T0
2L0!V(1)50, O~«!,

~]T0
2L0!V(2)5~2]T1

1L1!V(1)1N(2), O~«2!,

~]T0
2L0!V(3)5~2]T1

1L1!V(2)1~2]T2
1L2!V(1)1N(3), O~«3!,

~A5!

whereL0 is the linear operator of the system form5mc51, andL1, andL2 are defined by

L15S igpap~2]X0X
2 1]Y

2 ! 0 0

0 igsas~2]X0X
2 1]Y

2 !2gsas]X 0

0 0 2 ig iai~2]X0X
2 1]Y

2 !2g ia i]X

D ,

L25S igpap]X
2 0 0

0 igsas]X
2 gsm2

0 g im2 2 ig iai]X
2
D .
N(2) andN(3) are the nonlinear terms.
At O(«) we find that

V(1)5S 0

1

1
D A6~X,Y,T1 ,T2!ei (kc

6x1vc
6T0),

where we take the convention of writing

A6ei (kc
6x1vc

6T0)5A1ei (kc
1x1vc

1T0)1A2ei (kc
2x1vc

2T0).

Applying the solvability condition at orderO(«2) leads to

]T1
A65

1

t F S @ai2as#kc
62

as1a i

2 D ]XA6

1
i

2
~as2ai !]Y

2A6G , ~A6!

wheret5(gs1g i)/2gsg i .
The equation at this order has then a solutionV(2)

5(B2 ,As
6,0)T, where

B252
uA6u2

11 iDp

2
gpA6A7* ei [( 6kc

1
7kc

2)x1(6vc
1

7vc
2)T0]

gp1 i @gpDp1gpap~kc
12kc

2!21~6vc
17vc

2!#
,

~g i1gs!As
65@2~2akc

61a!]X1 ia]Y
2 #A6ei (kc

6x1vc
6T0).

Similarly, applying the solvability condition atO(«3) yields,
in terms of the original space and time variables,
t~] t1Uc
1]x!S15~m21!S11 i

as2ai

2
¹'

2 S1

2LF2i S kc
11

a

2aD ]x1]y
2G2

S1

2@NuS1u21~N1C1!uS2u2#S1, ~A7!

t~] t1Uc
2]x!S25~m21!S21 i

as2ai

2
¹'

2 S2

2LF2i S kc
21

a

2aD ]x1]y
2G2

S2

2@NuS2u21~N1C2!uS1u2#S2, ~A8!

where

t5
gs1g i

2gsg i
,

Uc
65~as2ai !kc

6/t1
as1a i

2t

56~as2ai !AD/2ta1gsg i

asa i1aias

a
,

L5
1

2 S a

gs1g i
D 2

,

N5
1

11Dp
2

,
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1

C6
511FDp1D

ap

a2
7

gsg i

gp

asa i1aias

a

AD

a G 2

.

Notice that, by dropping ally derivatives in the above
amplitude equations, one gets their 1D version, paralle
the walkoff directionx, as

t~] t1Uc
1]x!S15~m21!S11~d11 id2!]x

2S1

2@NuS1u21~N1C1!uS2u2#S1 ,

~A9!
y

v.
n,

ef

. E

ef

c

pt

pt.

01660
o

t~] t1Uc
2]x!S25~m21!S21~d11 id2!]x

2S2

2@NuS2u21~N1C2!uS1u2#S2

~A10!

with:

d15
a224aD

2~gs1g i !
2

and d25
as2ai

2
.

s.

s

c.,
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