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Convective and absolute nature of instabilities in nondegenerate optical parametric oscillators with large
transverse section, for negative detunings and in the presence of walkoff, is examined. The asymptotic re-
sponse of the signal and idler fields to a transverse localized two-dimensional perturbation is evaluated. The
presence of walkoff breaks the rotational symmetry in the transverse plane, and the system, at the absolute
instability threshold, selects traveling waves propagating in the walkoff direction among an infinity of unstable
spatiotemporal modes. We show that in optical parametric oscill&@@P©’s with negative detunings, con-
trary to the case of positive detunings, the walkoff shrinks the region of convective instabilities, and even may
suppress the convective/absolute transition. Hence, in a certain range of parameters, signal field envelopes in
the form of wave packets of zero group velocity are found where the instability is absolute at the onset,
although the walkoff is present. We also show that nonlinear pattern selection is ruled by the cross-coupling
terms appearing in the asymmetric coupled Ginzburg-Landau equations derived near-threshold of the signal
and idler generation. The numerical solutions of the original OPO equations confirm the analytical predictions
for the values of the instability thresholds and the corresponding selected patterns.
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[. INTRODUCTION threshold. The distinction between absolute and convective
instabilities in the unstable region is important to elucidate
Pattern formation in extended systems has received a Idhe mechanisms underlying the formation of these dissipative
of attention in fields as different as physics, hydrodynamicsstructures, and, in particular, to separate noise-sustained pat-
chemistry, and biology. The development of such studies i¢erns from those originating from the intrinsic dynamics of
supported by the progress of theoretical methods and is mdhe system. In the convectively unstable region, localized
tivated by practical situations in which this question arisesperturbations grow in a comoving frame, but are drifted out
As far as optics is concerned, progress in the knowledge off the system in the absence of a continuous source of noise.
pattern-formation mechanisms appears to be necessary to uii- the absolutely unstable region, however, such perturba-
derstand the behavior of large-area coherent sources such #@ns grow with time at any spatial position, and therefore
vertical cavity semiconductor lasers or high-power opticalaffect the system everywhere. In order to characterize the
oscillators. The transverse structure of the beam emitted byature of the instability in various different physical systems,
these oscillators is a key factor for their practical use. Theve give a unified description based on a classification of
structure must be mastered for applications including lasepatterns in terms of the group velocity® of the most un-
ranging, laser-induced fusion, or optical coherent informastable mode. Clads, systems are those characterized by the
tion processing. vanishing ofU°. Consequently, the basic state of these sys-
Transverse patterns in nonlinear optical systems havéems becomes directly absolutely unstable. Examples of
been widely studied since the early days of lasers. In the firstlassl , systems are, in optics, optical parametric oscillators
approaches, a modal decomposition was sufficient to undefOPQO’9 (respectively lasejswith positive (respectively
stand the experimental observations. By this technique, theegative detuning[1,2], degenerate OPO'’s for both signs of
laser field is projected on the basis provided by the emptgletuning [3]; and in hydrodynamics, the well-known
cavity modes. These are Hermite-Gauss or Laguerre-Gausayleigh-Ba@ard convection, and Taylor vortex flow. Class
modes for open cavities, depending on their symmetry, antlc systems are those characterizedWy~ 0. These systems
guided modes for waveguide and fiber lasers. When thexhibit a region of convective instability. Examples of class
transverse section of the laser beams increases, this decohg-systems are OPOlgespectively lasejswvith negative(re-
position requires larger and larger basis sets, and it becomepectively positivedetuning, and binary fluid mixturet]. In
inadequate for systems with larga@bout 100 Fresnel num- these latter three examples, the system undergoes a Hopf
bers. bifurcation to symmetry degenerate left and right traveling
In the global approach used for systems with a largevave patterns.
Fresnel number, the partial differential equations describing The question we want to approach now is the influence of
the dynamics in the presence of diffraction have to be solvedan additional effect which breaks the reflection symmetry
Lasers belong to a family of nonlinear continuous systemgx« —x) in the transverse plane supposed present in both
where dissipative structures branch out of a homogeneouwsystems classified dg andl.. Specifically, the knowledge
basic state when the external parameter exceeds a criticaf how this broken symmetry alters the convective/absolute
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nature of the instability in both systems is necessary. Theransverse Laplacian termgi) accounting for diffraction,
influence of this additional effect on the spatiotemporal berift terms (9,) describing walkoff effects:

havior of clasd 5 systems has been the subject of extensive

investigations in recent years: namely, the effect of walkoffdA,= y [ —(1+iA,)Ap+ E(x,y)—ASAi+iaprAp],

in degenerate OPO’E5-10 and in nondegenerate OPQO’s

without diffraction[11] and including diffraction12]. This T i x| 25 _

optical situation is analogous to that encountered inﬁtAS YL (AHTAJAHAAT HiasViAs— asdAgl, (D)
Rayleigh-B@ard convection and Taylor vortex flow where
an externally imposed cross flow, is added in both systemét
[13]. In OPO’s (respectively hydrodynamigsthese studies o ] .
reveal notably that the walkoffrespectively the imposed WhereA; with j=p, s, ori are the normalized slowly vary-
through-flow creates necessarily a region of convective in-ing envelopes for pump, signal, and idler fields, respectively.
stability. Therefore, the nature of the instability changesThe parameterd;, y;, anda; are the detunings, the cavity
from absolute to convective at the onset. These systems malecay rates, and the diffraction coefficients, respectielg.
also experience a second transition to absolute instability béhe normalized external pump and,; are the signal and
yond the onset. We are not aware of similarly extensive studidler walkoff coefficients, respectively. Note that the above
ies of the influence of this broken symmetry phenomenon omjoverning equations account for a type-l as well as a type-I|
pattern selection in cladg systems. Let us cite two refer- OPO. For instance, type-lIl OPO’s considered 9 are ob-
ences dealing with bin_ary fluid conveqtion with add_edtained from Eqgs(1) by settinge;=0 and keepingrs, the
through-flow in fluid medid 14], as well as in porous media polarization of the idler being, as the pump, ordinary, and the
[15]. signal extraordinarf9,12). Equations(1) have a homoge-

In this paper, we concentrate on OPO's in the case ofeqys trivial time-independef®PO OFF solution:
negative detuning which belongs to cldss systems. The

influence of walkoff is investigated and reveals new qualita- _ ; _ _ _

tive behaviors that are absent in our previous WdiX deal- Ap=El(1+iAp)=p, As=0, A=0, @
ing with OPQO’s with positive detuning. The paper is orga-
nized as follows. In Sec. Il, we recall the OPO governing>1)
equations, including walkoff and diffraction effects. Linear B . . . .
stability analysis of these equations is performed as an !t IS convenient to rewrite Eqgl) in terms of the devia-
initial-value problem to obtain both the pump thresholds fortons from the equilibriumB=A,—w, As, A; which obey
the onset of convective and absolute instabilities, and thé&he following system:

response of the system to two-dimensiof2D) localized

perturbations. The convective instability criterion allows us dB=y,[ —(1+iA)B+ia,VZB—AA],

to obtain the modulus of wave number at criticality, but there

is still a spatial degeneracy due to all possible orientations ofy A .= y [ — (1 +iA A+ wAF +iaszAs— agdh A+ A B,

the wave vector. However, the linear absolute instability cri- 3
terion shows that in most cases, the OPO selects a monodi-

mensional structure in the walkoff direction, as was observed a* — ..r _ 1 _iA.)A* A U2AR 9 Ak *
experimentally{16,17], but there remains a degeneracy be-gbtA' L= (AIADAT+ uATIa VAT = ad AT+ ABT]
tween the positive and the negative directions. The possible

transition to mixed mode patterns is then considered. Taking B. Linear stability analysis, dispersion relation,
advantage of the 1D pattern-selection mechanism which ex- and normal modes

ists in OPO's in the presence of walkoff, this is achieved by = The linear stability analysis is performed by linearizing
performmg_ analyt|ca_l studies on t_he c_orrespondmg é}mIO“'Eqs.(s) around the basi@OPO OFF state(2) and consider-
tude equations. Section Il deals with this approach to invesing normal modes solutions of the forgH**ikyY~i«t \where

tigate the evolution of wave packets in the unstable regionk:(kx'ky) is the real transverse wave vector and the
The characteristics of the instabilities such as the thresholdgomplex frequency of the linear problem.

and critical wave numbers and frequencies are analytically The pump variation is linearly decoupled from those of
obtained with special emphasis on the case of small walkoffihe signal and the idler, and the dispersion relation as ob-

valid in almost all experimental situations. tained after straightforward calculations is
Numerical simulations of the full 2D OPO model are car-

ried out to check the validity range of the analytical studies.  D(ky,k? )= w?+i(bs+bj)w—bb;+ ysy;u?=0, (4)
They are reported in Sec. IV. Concluding remarks are sum-

Ai: ’)/ll:_(:l.‘|‘|A|)A|+ADA;c +iaiViAi—ai&XAi],

and, a nontrivial one which exists only above threshqld (

marized in the final section. where we have set
Il. CONVECTIVE VERSUS ABSOLUTE INSTABILITIES be= yd 1+i(As+ak?+ aky)],
IN OPO’S
A. Model bi=y[1—i(Aj+ak®—aike)],

We start from the standard descriptid®?] of an OPO in

. . . . . L k2= k2+ k2
the mean-field approximation. It includes, in addition to the x TRy~
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112 face (5) depends on both components of the wave vector
i (kx,ky), and cannot be reduced to a simple dependence on
1107 the wave-vector modulug(k?), as is the case without
H walkoff [see Fig. 1a) for a projection of this surface on the
=108 '\‘ plane (u,k,)]. The stability analysis for the case>0 has
3_.2 been performed if12]. In the sequel we will mainly focus
E 106 on the casé\ <0.
§ The onset of instability at critical threshojd=u.=1 is
o 1.04 obtained for wave vectors minimizing in Eq. (5) which are
g :
= given by
1.02 , \
a—4a
L0 (KS+ a/2a)2+(k§)2=4—a2. (6)
| 1
08 _oma” 00 0.8
K The critical real wave vectois"= (k§ ,kf,) belong to a circle
X [solid curve of Fig. )] centered at K,= — a/2a,k,=0)
0.6 | | | | | with a radiusR= \/D/2a, andD = o*— 4aA. As indicated by
() the nonzero value of,, the rotational symmetry is broken
04k i by an amount- «/2a depending on the competition between
‘ walkoff and diffraction weighted by the cavity losses. Note
that when walkoff vanisheld ], the circle(6) of critical wave
02~ iy vectors is centered ork=0, with (k%)?2=(k%)?+ (k%)?
=—Al/a [dashed curve of Fig.(h)]. The basic stat€?) is
a4 00 linearly unstable to all 2D transverse modes lying on the

circle (6). Contrarily to the case of positive effective detun-
= ing A, where walkoff selects at threshold a 1D structure ex-
panding in its directior{12], this 1D selection mechanism
i fails for A<O.

0.2

T

0.4

i

0.6 L L L L ! C. Response to localized perturbations

The linear stability analysis, given above, is based on the
k, normal mode theory, i.e., it checks the stability with respect
to extended perturbations. Such an approach is insufficient to
determine the linear response of the system to any localized
perturbation. This is provided by solving the linear initial-
value problem:

FIG. 1. The coupling effect between walkoff and diffraction
breaks the rotational symmetry in the transverse pléeProjec-
tion of the neutral stability surface on thg (k,) plane.(b) Plot of
the critical wave-vector components at the onset of instability (
=u.=1). Walkoff shifts the circle of unstable transverse wave

= i * 25 _
vectors. Signal walkoff parameter is,=0.27 for the solid curves IR~ v —(LHTAJAH uAT T1asVI A= arsdyhs]

and a;=0 for the dashed ones. The fixed values, for all figures, of =A(°)5(X) 8(y)8(t)
the other parameters ang=vy;=1, A;=A;=—-0.14, a,=0.5, g s ’ 7
=0.42, anda;=0. @

FAF = B[ — (L=TA)AT + pAs—ia VI AT — aid,Al ]

The dispersion relation yields the neutral stability surface
[Im(w)=0] in the 2D plane of the wave-vector components
(ky,ky) in the form

= A Ds(x) 8(y) a(1).

The left-hand side is the linearized part of E¢b). around

2 2 212\ 112 the steady-state solutidi2). The forcing terms added to the
wiky k)= 1+ [A-a7lAatalkt al2a)”+ak)] right-hand side of Eqs(7) represent a localized initial im-
Y (yst yi)z pulse forAg and A, & being the Dirac function. Problem

5 (7) can be solved using Fourier transforms in spacg/)
and the Laplace transform in timgdefined by

cia(kx,ky,w)=Jf:f:f;xd)(x,y,t)

x el(@t=kx=ky)dx dy df (8)

with a frequency

YsYi
Yst i

w(Ky ky) = [Ag— A+ (ag—a)) K2+ (gt aj)ky],

where we have set= y.a.+ yia;, A= yA+viA;, anda
= ysas— yi; . In the presence of walkoff, the critical sur- whered®=(Ag,A¥ , AL AxO)T,
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~ After solving the problem in Fourier space, and perform-(x,y) to be large a$ becomes large, so that one may follow
ing the Laplace transform by the residue theorem, the soluy propagating perturbation. If the solutiéq(x,y,t) is un-
tion Ag(x,y,t) may be written as bounded ag—c, the system is linearly unstable, and then
o we have to distinguish between two types of instabilities.
AXY. )= — b S j”f” Sh(@n Ky ky) Any instability along a ray withJ,V) = (0,0) grows in time
e 472 10=1 J-» ) -« dD in situ and invades the whole spatial domain: it is called
%(“’“ Ky Ky) “absolute.” Any instability along a ray with J,V)#(0,0)
_ grows in time but is drifted away: it is called “convective.”
x e~ (ent =k mio)) dk,dk, (9 Asymptotic expansions of the integid) can be obtained by
. applying the method of the steepest des¢##t. It consists,
with Sn(@n ke k) =AM iwy+ [ —(1-iA) +iaik?  in particular, in deforming the real wave-vectocontour of
—iaik,J}— ysuAF O, andw, (n=1,2) are the two complex integration in Eq(9) into the two complex plands, andk,
frequency modes solution of the dispersion relafign The  without changing the value of the integral. The dominant
mode, with the largest growth rate is the one which firstpart of the integrand arises in the region of the saddle point
absolutely destabilizes the system. Thus we shall now cortks kj) defined by
sider only this most destabilizing mode, whose frequency we
will refer to asw. The emerging signal patteriy(x,y,t) is ﬁ_w_u q <9_w_v 10
obtained by the asymptotic evaluation,taends to infinity, oKy an Ky - (10
of the solution(9) along the raysx/t=U, y/t=V for all
constant values ofJ andV. Note that it is necessary to in- The shape of the signal response to the initial pulse pertur-
cludex/t andy/t terms in order to allow the transverse point bation is given in its dominant form by

i S(a (k5 k), S Ks)el (o V o

ALY D { Po \? Po Po|
— (K3 .k, (k3 kD)) ( ) -
Jw y T kg k2 oK2 bk
|
The necessary, but not sufficient, condition for absolute inwhere
stability is the existence of a saddle point of frequentcy o
= w(k3,k5) in the two complexk, andk, planes for some F=a+a[y,— ys—i(ak’+ ak,+A)]/RY?
complexw(® with Im(w(®)>0 andU =V=0. However, for B
sufficiency, it is required that the spatial branches in each of 2G=a+ a[y;— ys—i(ak®+ ak,+ A)]J/RY?,
the complexk, andk, planes, which are the solutions of the
dispersion relatiort4), originate from the reak, axis andk, R=4vysyiu?+[vi— ys—i(ak®+ ak,+ A)]?,
axis. This is the so-called pinching conditipt®]. These two
points are investigated in the following. First, we look for the and
necessary condition, which provides us with possible values —
for the absolute instability threshold, and second we check a=vysas— 7ia;,
the pinching condition for sufficiency. -
Thus, the first step is to investigate the emergent signal A=y As—viA;,
(idler) pattern characteristics corresponding to the absolute
instability atU=V=0, by solving a=yeast yia; .
dw As can be seen from Eq(12), V=0 when k,=0 or
ak, KF k) Gk k) =U, 1D F(k,k)=0. If k,#0, then the conditiony,V)=(0,0) is
fulfilled when F(k,k,) =G(k,k,)=0 which, after straight-
Jw forward calculations, statesso;+a;as=0. Note that this
—=k,F(k, k) =V, (12 coupling between drift and diffraction effects reduces to a
dky Y vanishing walkoff condition in frequency-degenerated
. . OPO’s with negative signal detuning®]. The condition
with the  solution of Eq.(4): asa;+a;as=0 requires very specific values of diffraction

L and walkoff, which are difficult to obtain experimentally. For
2w(k, k) =ak?+ ak,+A—i(ysty)+iRY2 (13)  the generic casasa;+a;as#0 (which is always true in the
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Im(k)

(k)
/
)

signal walk-off parameter o

FIG. 2. Dependence of the pump parametewnersus signal
walkoff «g at instability thresholds: solid curve fai,,.and dashed
curve foru . both are obtained from the OPO dispersion relation.
Open circles are the Ginzburg-Landau approximation. The OPO
OFF solution is stable fop<u.=1, convectively unstable for
<< and absolutely unstable fpr> u ... The convective
and absolute thresholds degeneraig= 1., at a critical value
ag: the system is then never convectively unstable.

Im(k)
Im(k)
\.J
p

case of degenerate OPO’s with walkoff whexg=4a; and
as=a;), and then U,V)=(0,0) is satisfied fok,=0. This
means that the system selects the traveling waves propaga
ing in the walkoff direction(x) among an infinity of unstable
spatiotemporal modes. Two traveling wau@¥V) with two
different frequencies»?) and wave vectorskf™ ,0) are se-
lected at the different thresholds of absolute instability. To FIG. 3. Thew;=0 contours of the dispersion relatigd) are
determine these threshol@&ibfu(kii)], Egs.(11) and  Pplotted in the complek plang for increasing vqlues of the pump
(12), together with |m(o(0)) 0 andU=V=0, have been paramete_r,u. (@ A contour_wnth four branches is obtained far
numerically solved with a Newton-Raphson algorithm for a = 0-5<#abs: (D) £=0.9< p the four branches are deformdd)
S_ B=p 1.0075: the branches “pinch” below the real axis for
complexk®=(k$,0). The result of this mtegranoryxgbg is abs( 0.82,-0.16). Note that Ré(y) is negative.(d)
depicted in Fig. 2, which will be discussed in detail once the<lua”s1 02< 2. - the branches split andbseparate after pincﬁaé’)sg.
sufficient condition for absolute instability is verified. —u},=1.038: the pinching condition is fulfiled fok=k.,
The second step is to check that the frequencies of thesg(+0 62-0.33). Note that Re(},) is positive. (f) u=1.5: the
two TW correspond to a pinching point in thg complex  branches split and separate again after pinching.
plane, i.e., the sufficient condition. To do this, we &et
=0 in Eq.(13) and, by expanding it, obtain a fourth-degree D. Discussion of the results
polynomial ofk, . We then numerically solve it in the com- | et us now discuss the connection between our analysis
plex k, plane by a Gauss-Laguerre method for different val-and the mechanism of the transverse pattern formation when
ues of the pump parameter in the vicinity of the saddle pointhe pump parameter is varied. The variations of the absolute
corresponding tavg=0.27. thresholdsu ¢ for both modesw™ and w™ are plotted in
For a given value of the pump paramejerthe solution  Fig. 2 versus the walkoff parameters in the case of a
of the dispersion relatiofd) forms four branches in thk,  type-Il OPO. They call for the following comments.
space. The four branches for different values of the pump (i) ug.(solid curve exhibits a nontrivial dependence on
paramete are depicted in Fig. 3. As the pump parameter iswalkoff in OPQ’s with negative detunings. The thresholds
increased, two branches emerge from the lower and from thfor absolute instabilities depend on a competition between
upper half-planes, pinch below the real wave-vector axisvalkoff and diffraction contrary to the threshold for convec-
when the saddle-point value is reached, and, finally, theive instability u.=1, which is independent of walkoff. The
usual exchange of branch identities is observed, as shown imode with frequencyw~ becomes absolutely unstable first
Fig. 3. Note that the pinching condition is satisfied for bothregardless of the walkoff value. Thus at onset of the absolute
modesw® [Fig. 3(c)] andw'? [Fig. 3e)]. All saddle points instability, the system selects a TW propagating in the
we have numerically checked verify this sufficient condition.walkoff direction with a frequencyo(_o) and a wave number

I

Re(k) Re(k)
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k(). Note that this is differentexcept fora=0) from 0,081 ]
type-Il degenerate OPQO’s as studied bydetial.[9], where
both modes have the same absolute threshold.

(i) There exists a critical walkoff value$ with particular
properties. It corresponds to the minimum value (0f,,
which is then equal to unity. This means that fey= o<,
both absolute and convective instability thresholds coincide.
At this point, the OPO OFF state becomes directly absolutely
unstable with no transition through a convective instability
region as is observed for other values of the walkoff. This R
may be interpreted as the point of the strongest competition STABLE
between walkoff and diffraction.

For a<ag, the purely convective region Qu<puqnd -0.08 . ‘ ]
shrinks asag is increased, meaning that the walkoff counter- 0.00 0.08 0.16
balances diffraction, as far as instability thresholds are con- U=x/t
cerned. This occurs through a reduction.gjy, i.e., a low-
ering of the absolute instability threshold. Far>«ag, the
absolute instability threshold increases with, this is a pa-
rameter region where walkoff dominates diffraction.

In the general case of OPQ's of both types, this occurs fo
parameter valued, «;, anda; linked by a relation analyti-

cally obtained by stating that at this point the group velocity - .
of the most unstable mode vanishes, i.@p/ok)|,_, =0.  These relevant velocities can be obtained from the growth
C

0.00

V=yit

FIG. 4. The maximum growth rates{,,>>0) vs the group ve-
locity (U,V) is depicted by the dashed line for a given pump pa-
rameter. The regions of convectively unstable 1D wave packets
delimited by the solid line circles™ =0 (0" =0) centered on

- (UZ) are also shown.

This leads to the parameter relation rate of unstable wave packets.
In this section, we first investigate the wave-packet propa-
. (ast aj) gation in the unstable regime and determine which mode first
A*=—{2a(a-ay+a(ast ai)}4(a-—a B absolutely destabilizes the system, i.e., the first to have a
1 S

vanishing leading front velocity. Second, nonlinear selection

which is valid only fora,#a, . between the most unstabl_e 1D mod_es is analyzed in terms of

Note that in all these expressions, the diffraction contri-CoUPled amplitude equations, derived near threshold. We
bution is proportional to the difference between diffractionShoW that, in particular, nonlinear interaction prevents the
coefficients of the idler and signal fielda; (- a5). Therefore, ~Occurrence of any mixed modes in the absolutely unstable
it is expected that features such as the convective region iff9/me.
the absence of walkoff disappear in degenerate OPQ'’s where
a;,=4a;. This is similar to previous works on OPOQO’s and

degenerate OPO's in the absence of walkoff. For instance, A. Linear analysis of transverse wave packets
Sanchez-Morcillet al.[20] showed that in OPQO'’s the local- ]
ized structures have zero group velocity wherr a, . We restrict ourselves here to the case of wave packets

To summarize, in the general case, the existence of a coitith a positive growth rate £=0), i.e., above critical
vectively unstable regime stems from a complex competitiothreshold > ). Note that the temporal growth rate of
between walkoff &) and diffraction &;—a,). the wave packet can easily be obtained from &).as o

(i) In the intermediate regiom < u<pqpe it is ex- == Im(k,)U—Im(ky)V. It takes into account, in addition
pected that there will be a competition between the 1D abto the usual temporal growth term;, spatial contribution
solute w~ mode and the convective instability of the*  terms where the propagation velocityJ (V) of a wave
mode since the pump parameter exceeds the threshold valugacket has an important role in the unstable regier0).
for both these instabilities. To understand how the systenhet us recall that when the instability is convective, then the
destabilizes in these conditions, it is necessary to study therigin (U,V)=(0,0) does not belong to the unstable wave
dynamics of the wave packets emerging from both transversgacket. The instability becomes absolute when the wave

modeso™ andw™. packet spreads but at least one spatial mode has a vanishing
front velocity (U,V). It is thus natural to determine the
Il. EVOLUTION OF WAVE PACKETS convective/absolute nature of an unstable wave packet by
IN THE UNSTABLE REGION characterizing the evolution of its temporal growth rate in the

(U,V) plane. The critical velocities of the most destabilizing
ave packets, at criticalityu= u.) where they reach their
reatest growth rate, are defined byo.

In the unstable regime, localized perturbations grow i
space and time in the form of wave packets. Their evolution
is characterized by their group velocity and their leading an grad
trailing front velocities. The relevant wave packets are the=o(w¢,K.,(U¢,Ve)) with (U ,V.) = — (o, . After simple
ones which first destabilize the system and spread the fastesalculations, they are analytically given by
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02 @ u<u | ()

V.=0. Hence, the most absolutely unstable mode is that of
the two modes, = (k. ,0) having the smaller velocity

(see Fig. 4. Therefore, among all 2D convective unstable
modes, above critical threshol@g. & ..), one may only deal
with those active modes lying near the 1D critical modes
ks =(k;,0) parallel to the walkoff. We will thus carry out a
2D analytical study of the propagating wave packets, result-
ing from the competition between these 1D transverse modes
given by

yit

0.0

02t B E

& © Ll;x< W< @)

kr=(k:,00 with kI=(—a*\D)/2a,
(14

yit

s 0=
ws =wo—Ucke,

\

with wo=[A;— A+ (as—a)A/a)l2T=w, (as=a;=0).
The maximum growth rater.,,, is reached forUCi:US
+ (as—a;) VD/2ar while V; =0. To determine the front ve-
locity U, we once again use the Newton-Raphson algorithm.
FIG. 5. Transition from convective to absolute instability of the Figure 5 shows the result of the integration of the OPO dis-
two most unstable 1D wave packets of Fig. 4 is illustrated, forpersion relation(4) under the conditiorr=0, in the plane
different values of the pump parameter in the (U,V) plane.(@  (U,V), and for increasing values of the pump parameter
K< Haps reproducing the two small circles of Fig. 4b) At 1 At threshold of convective instabilityu(= u.), omax=0 and
= Maps: ONE Of the circles ¢ ™) touches the origin: the system be- corresponds to two point&rosses in Fig. Bin the plane
comes absolutely UnStablfe) 11qps< u=1.02< g for all values (U V). Above onset a™ u., o'maciS positive and all posi-
of (U,V) inside the circle ), the system is absolutely unstable. tive + such that 6 o< o max belong to the disks delimited by
@ ",‘:“;bszl'l and the Circ'?,‘(j) in turn touches the origin ;o circles. The velocitiesY*,V*) corresponding tar
Ie?dlng to the absolute instability of the second transverse modgo represent 2D fronts of the perturbations, so along these
@ rays x/t=U* andy/t=V*) the system is marginally stable.
At some pump parametes = ups> pe, U*=V*=0, and
the system becomes absolutely unstdlig. 5b) and Fig.
5(d)]. It is clear that the mode~ becomes absolutely un-
stable before the mode™ as can be seen from these figures.
D The curves in Fig. &) and Fig. %c) also show that while
=R§=[(as—ai)/7]2(—2)}, the modew ™ is absolutely unstable, the mode® is still
4a convectively unstable since the corresponding disk does not
contain the origin. Foru>u_.., the system is absolutely
whereU¢= ysyi(asai+a;as)/(asyst+a;y;). The setv; cor-  unstable with respect to the two modes and w™ [Fig.
responds, in the planel(V), to a circle centered atU  5(d)]. The fastest front velocity linearly takes over the dy-
= Ug ,V=0) and with a radiu.. For fixed parameters, at namics of the system.
thresholdu= u., each point on the circle represents a de- In order to study the nonlinear coupling between these
fined group velocity from which 2D wave packets emergetwo modes, we derive amplitude equations close to critical
for u>pu.. These group velocities, in the presence ofthreshold. We restrict ourselves to a 1D weakly nonlinear
walkoff, are at unequal distances from the origid,Y) analysis of these two modes, since the first mode to be ab-
=(0,0). Foru>u., the unstable wave packets expand, insolutely selected is 1D, and is the first to be affected by the
the unstable regions{=0), and their trailing fronts are lim- nonlinear saturation.
ited by the zero growth rate=0. Figure 4 shows, in the
(U,V) plane, the circle \(;) of critical velocities. Only the
emerging wave packets from the two 1D modks
=(k. ,0) are shown, for clarity. Their respective convec- The wave packets centered on the unstable magdeand
tively unstable regione=0 and U,V)+(0,0)] limited by ~ w_; can be characterized as plane wa®sx,t)exp(k; X
the circleso™ = o (k; ) =0 are also shown. When increasing —w,1), respectively, with complex amplitudes. (x,t)
the value ofu aboveu., one of the infinity of wave packets which may be slowly modulated in space and time. The
centered on the circlevf) will reach the origin first leading weakly nonlinear dynamics of these wave packets can be
to the onset of absolute instability. As a consequence, thdescribed by a set of two coupled complex Ginzburg-Landau
selected wave packet is the one closest to the origin, which isquationCCGLE) for the amplitudes.. (see the Appendix
the one with the smallest group velocity on tHe axis with ~ for detailg. Their 1D version reads

/N 0.1k
0.0 : : 0.0
L

02&

e 021

U=xi U=x/t

vc=[(uc,vc) such that(U,—U2)?+ V2

B. Nonlinear wave-packet selection
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7+ UJ 0S8, =(n—1)S, +(dy+id,)d5S,
—[N|S,|?*+(N+C")|s_|?]S, ,
(15)

9+ U d)S_=(u—1)S_+(d;+id,)d2S_
—[N[S_[>+(N+C7)[s;[’]s_,
(16)

with all coefficients defined in the Appendix.

PHYSICAL REVIEW E 63 016604

7(dy+idy)U,

kIf=k>— (20
O 2(di+dd)
+ “+ T(Uct)z

W, =W, ——————, 21
ST T ) (21)

with ki =(—a=D)/2a andw; = wo—k; U2.

A short inspection of the relationd9)—(21) and of the
stability diagram of Fig. 2 shows that when the walkoff van-
ishes, the two modeS, and S_ simultaneously become

Note that contrary to the classical CCGLE, the presencgpsolutely unstable. They correspond to traveling waves

of the walkoff, which breaks the reflection symmetmy+¢
—X), compels the group veIocitiesUG) and the nonlinear
cross-coupling termsN+C™) to take different values for

propagating in opposite directions with velocitiek, (e
=a;=0)=*(as—a;)YD/(27a). So we can say that the
system exhibits bicritical absolute instability. In the presence

each mode§, andS.). We first calculate the boundary for of wajkoff, this bicriticality persists for degenerate OPO’s

absolute instability within the context of linear parts of Eqs-wherea3= a, [9]. These systems may exhibit at the absolute
(15) and (16). This linear problem can be solved by exactinsiapility threshold, according to the linear analysis, two

integration for an initial condition of the forrs..(x,t=0)
= §(x) (a Dirac function, giving fort>0 [21]

A -1/2

-1
xex;{“
T

In the limit of long time behavior, the growth rate. of
the amplitudesS.. for any positionx reads

(x=Ugt)?
4(d?+dd)t|

t_T(dl_idz) (17)

(xIt—U;)?
O+ = - T .
T Y a(d2+d?)

(18

In the frame moving at velocityx(t)*=U_ , the ampli-

tudesS.. are dominated by the most unstable modes with thdS"|>=(x—1)C /[N(C"+C")+C C"];

maximum growth raterT® reducing to —1)/7. A wave

traveling waves propagating in the same direction with the
same velocity U; (as=a;) = U8= vsvi(asa+ajas)/(asys
+a;7;) but different wave numbers and frequencies. The
situation is qualitatively different for OPQO'’s. The presence of
walkoff breaks the bicritical nature of the absolute instability
and the two mode$S, andS_ may appear at different ab-
solute instability threshold§-ig. 2). The physical parameters
chosen in the numerical simulations imply that the m&de
appears firsti.e., u,< mapd- All these predictions are as-
sociated with the linear properties in the sense that only the
nature of the instability of the trivial homogeneous and time-
independent solutiofOPO OFF was investigated. A non-
linear analysis is required to clarify which pattern may be
selected when the system becomes absolutely unstable.
Equations (15 and (16) admit spatially uniform, time-
independent solutions: (0,0)S{,0), (0S3.), and the mixed
mode S",ST), such that|S®|?=|S5|?=(u—1)/N and
il
=|ST|2C*/C~. We note thatC* andC™ are different, so

packet that eventually grows in some frame is confined bethat the system does not allow for standing waves. The above
tween two rays on which the growth rate is zero. In order tdinear spatiotemporal analysis showed that the trivial state

obtain the absolute instability boundary, we take0 at a
fixed point(i.e., x/t=0). The onset for absolute instability
then reads

’Tzdl

——=—(UD)2 19
+4(d§+d§)( c) (19

Maps 1

The boundaryuis plotted versusrg as open circles in

(0,0) becomes absolutely unstable wher u ... As a con-
sequence, the traveling wave with the amplit®lespreads
over the whole spatial domain. As the pumping is increased,
the question of the transition from this traveling wave to the
mixed ones with amplitudesS(" ,ST') remains. The study of
the stability of the modeS® ,0) with respect to mixed modes

is then required. It is done by introducing the perturbed am-
plitudes S_(x,t)=S + 6S° (x,t) and S, (x,t)=8S, (x,t),

and performing a linear stability analysis. This leads to two

the stability diagram of Fig. 2. As can be seen from this plot,eigenvalues, which can be related to amplitude and phase

the CCGLE approximation is valid in the whole range of disturbances, respectively. The amplitude ones never desta-

accepted values of walkoff and the accuracy is excellent fobilize S_(x,t) since their growth rateoan=—2(u

small ones. —1)/(N7) is negative. The growth rate of the phase distur-
In order to determine the wave number and the frequencpanceso,= — (Nd,/7)g?—0(q*) is also negatived being

of the two respective modes at their absolute threshold, wéhe wave number of the perturbatjoiTherefore, the system

perform a saddle-point analydi$2] in the context of linear
parts of Egs.(15 and (16). A straightforward calculation
leads to

does not experience the Benjamin-Feir instability. Up to
now, we have considered a traveling wave with wave num-
berk=k_ (i.e., S° is homogeneoys|f the wave numbek
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t=0 t=200 t=600 t=1000 t=1600 t=3000

FIG. 6. Time evolution of the near-field signal amplitude obtained from the integration of the full 2D OPO model. The pump parameter
value is that of pointa) in Fig. 2, where the system is convectively unstable.

is allowed to vary k#k.), we expect that the traveling wave tion between the two unstable modes. We finally state that
may experience the Eckhaus and zigzag instabilities. Théhis nonlinear selection and the importance of the coupling
study of the convective or absolute nature of these secondatgrms in Eqs(15) and(16) also hold for the bicritical abso-
instabilities is worth addressing. Work in this direction is in lute instability present in particular, in degenerate OPQO's.
progress. Thus the stability of the mod#® (0) depends only Indeed, if for a range of initial conditions one of the two
on the stability of the traveling wav®, (x,t). By linearizing  modes is excited and spreads over the whole spatial domain,

Eg. (15), one gets no transition to the mixed modes is predicted by our nonlin-
ear stability analysis. This result is consistent with numerical
70+ U7 0,85, (x,1) = (— 1) 8S, (X,t) simulations of degenerate OPO equations reportd@]Jin

+(dy+id,)956S, (x,1) IV. NUMERICAL RESULTS

—(N+C")[S2[?6S..(x,1). In this section, we numerically investigate the validity of
our predictions by integrating the full 2D OPO modElgs.

If we consider the expression ¢8° |°=(u—1)/N, the ef-  (1)] above the critical thresholdu(= ). For the integration

fective growth rate of 6S,(x,t) is found to be f+  we use the same scheme a$8h We just recall here that the

—1)(—C™*/7N). We note that the presence of the cross-integration is based on a variable-step fourth-order Runge-

coupling term C™) leads to a nonlinear negative growth rate Kutta algorithm for the temporal evolution in normalized

for the modeS,. . Therefore, we do not expect any transition units. The variables are developed on a 2266 grid of 240

from the S mode to the mixed mode in this problem. spatial units, performing the diffraction terms calculation by

Hence, the upper curve in Fig. 2 has no physical meaningneans of a fast Fourier transformation ite (k, ,k,) space

because it does not take into account the nonlinear intera@nd back. For the external pump, we used a Gaussian beam

t=0 t=200 t=600 t=1000 t=1600 t=3000

FIG. 7. Time evolution of the signal field pattern in the absolutely unstable refgioist (c) in Fig. 2]. (1) Amplitude time evolution in
the real transverse plarigear-field. (2) The far-field evolution. Note that the wave vector selected is negd8y®hase pattern evolution
towards a stripe pattern.
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neous wave packets which are randomly distributed in the
signal amplitude propagate from the left to the right in the
direction of the walkoff, i.e., in one direction only, and are
(1) drifted outside the transverse pump section giving rise, at
long time ¢=3000), to a front which eventually disappears.
By further increasing the pump parameter, we enter the
region (i) where the modav™ is absolutely unstable, as
shown in Fig. 7, forEqg=2.28[ u=1.02> p,,s point (b) in
Fig. 2]. The most significant feature is that the generated
transverse signal beafupper row extends asymptotically
all over the pump transverse section, therefore increasing the
OPO efficiency together with the energy conversion from the
pump to the signal. The far-fielgniddle row) and the phase
(2) pattern(bottom row evolution are also shown in this figure.
The formation of the ring of linearly unstable transverse
modes in the far-field and the corresponding phase patterns is
seen for early time development<600). The further time
evolution (60Gst=<1600) shows the nonlinear selection
where only those 2D modes lying near the most absolutely
unstable mode ~ are still active, as predicted in Sec. lll. As
can be seen from the figure, the asymptotic state corresponds
to a signal field with homogeneous amplitude and a phase
“ ““ (3) stripe pattern, perpendicular to the walkoff direction. The

wave number of the stripe pattern is equal to that predicted
[see Fig. &)] by the linear absolute stability analysis.
When the pump parametgr exceeds the absolute thresh-
old s of the modew™, the linear stability analysis states
t=3000 that both modes with negatigespectively positivewave
number for thew™ (w™) mode could develop, as shown in
FIG. 8. The asymptotic signal fieldt€3000) for x=1.05 Fig. 3(c) [respectively Fig. &)]. A typical asymptotic nu-
> uis plotted.(1) Near field,(2) far field, and(3) phase pattern. Mmerical solution is depicted in Fig. 8 for a pump parameter
Note that the numerically selected wave vecto(@his negative, as  Value Eq=2.35[ u=1.05; point(c) in Fig. 2] above the ab-
predicted by the nonlinear stability analysis. solute thresholgs ... The OFF state is destabilized all over

. . , , , the transverse profile and the OPO emits a circular bright
of maximum amplitudeE, and with a waist of 112 units, g,nt Note that on the far-field image of Fig. 8, the wave

while th? ;i_gnal an_d' idler fields are ggnerated starting frorrhumber is negative. This is in agreement with the nonlinear
random initial condition$8]. The evolution of the transverse analysis, which predicts that even in the region where the
dynamics is computed for a fixed signal and idler pair Ofmodew* is linearly absolutelyunstable, it is the mode ™

walkoff parametersys and «; and various pump parameter \pich is selected. Indeed, once the first unstable magde (

values above the instability threshold. The numerical solu;g present, it inhibits all other linearly active modes. The

tiois presented_here are obtained for a type-Il OPO Withyarging pattern depends strongly on the nonlinear interac-
as=0.27 anda;=0. The choice of the value ofs corre-  tion among all active modes. This is exactly what we have
sponds to a walkoff angle of about 0.1 mrad for the signal,pserved in Fig. 8. Let us recall that this is different from the
field and was discussed i8] in connection with experi- <o of degenerate OPO’s where both modes &nd ™)
ments. The remaining parameters are sefje ys=¥i=1,  paye the same linear absolute growth rate, which is selected

Ap=2,A;=A;=-0.14,8,=0.23,8,=0.5, anda;=0.42.  genending only on the initial conditioris].
Here we have reported three series of numerical solutions

of Egs. (1) representative of the three qualitatively different
regions of Fig. 2, namelyi) u.=1<u<pu,., Where the
OPO is convectively unstabléi) u,,< u<u.pe Where the Transverse pattern formation in OPQO'’s as a response of a
system is globally absolutely unstable with respect tosihe 2D localized perturbation has been examined. As far as we
mode; and(iii) 4> u.,s Where both transverse modes areconsider localized perturbations, the transverse asymptotic
linearly absolutely unstable. In the first regién and for  form of the signal is given by the “modes” evaluated with
Eo=2.24 [corresponding tqu=1.002, point(a) in Fig. 2], = complex wave vectors, and not with real-valued wave vec-
the temporal evolution of the signal field pattern is shown intors. These wave vectors correspond to the saddle points of
Fig. 6, starting from random initial conditions. In the tran- the OPO dispersion relation. It turns out that, at the onset of
sient regime {=600), we observe the random formation of instability, in nondegenerate OPO'’s, a ring of wave vectors
domains in the amplitude of the signal field where all linearis excited giving rise to propagating wave packets but with
active modes are present. Later, the defects or inhomogelifferentgroup velocities. In the absence of a noise source,

V. CONCLUSION
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these wave packets are drifted outside the transverse gaio understand the pattern formation of OPO’s for higher val-

section of the pump field which is at rest and no long-termues of the pump parameter. Work in this direction is in

pattern is observed. The system settles back to the basic stgisogress.

(OPO OFH. A small increase in the pump parameter brings

the system into an absolutely unstable regime where the ACKNOWLEDGMENTS
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walkoff direction, but with two distinct absolute thresholds.

Because of the nonlinear interaction of these two modes, APPENDIX

only one of them(the one with the lower linear absolute

threshold is systematically selected, irrespective of the ini-

tial conditions. All analytical predictions have been con-

firmed by integrating numerically the full 2D OPO model.
We have limited this work to primary instabilities. How-

ever, in a certain range of parameters, the wave packets may aV=LV+N, (A1)

be destabilized either in phase or in amplitude and secondary

instabilities should be investigated. In particular, the impacwhere the vectol=(B,As,A*)"T contains the three field

of convective and absolute instabilities on the thresholds ofariables, * stands for the complex conjugate, &nib the

Eckhaus and zigzag instabilities is worth examining in ordetinear operator of the system,

In the following, we present the derivation of the coupled
Ginzburg-Landau amplitude equations from the mean-field
model of the OPO. For this purpose, it is worthwhile to write
the OPO equation€l) in the compact notation

— yp(1+iAp) +iyya,V2 0 0
L= 0 - 75(1+iAs)+iysasVi_ Yssdy MYs
0 HYi —y(1=iA) =iy Vi~ yiaidy
|
N is the nonlinear operator, +a,a9)/a. Above threshold, we introduce a small parameter
which measures the distance to criticality by setting w.
~ YpAA =¢&%u,, Wherep, is of order unity. This fixes the spatial and
N=| »A*B |. temporal scalings tésee Refs[1,12))
YiAsB* x=Xo+eX,
At threshold (for A=yAs+ 9,A;<0), the linear stability
analysis[12] shows that the OPO presents a supercritical y=Yo+eY, (A2)
bifurcation atu= u.=1 to a nonhomogeneous state (w;)
defined by t=To+eT +e’To+---.
. \/5 @ Temporal and spatial derivatives in E@s) are then replaced
ke=*-——5=, b
2a 2a y
we=0P-U%:, dy=dr,+edr +e%dr,,
where we have set= agys— «;y;, a=agys+a;y;, andD dy=dx, T edx, (A3)

=a?—4aA in the first equation. In the second one(”)
=7ysvilAi—As—A(a;—ag)/al/(yst+ y,) is the critical fre- B Js
quency in the absence of walkoff and?=y.yi(asa; dy= vyt Nedy.
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The evolution equations for the field variables are obtained’he functionsV(") depend on the slow variablé§, Y, Ty,
by expanding the solutioW in power series of: andT,. By substituting the expansig@i4) and the relations
(A3) and(A2) in Egs.(1), and then collecting coefficients of

=V 4 o2y(2) 4 3y(3). .. . . . .
V=eVii+ eV a7V : AD " ike powers ofe, the following equations are obtained:
(d7,~ Lo V=0, O(e),
(d1,~Lo)VP=(—a7,+L )V +NE), O(&?), (A5)

(91,~ Lo)V®=(= a7 +L)VP+ (=1, + L)) VID+NE), 0(s3),

wherel is the linear operator of the system far=x.=1, andL,, andL, are defined by

| ypap(20% x+ %) 0 0
L= 0 [ YSas(Zﬁ)Z(OX'i_ 5\2() — Ys@sdx 0 ,
0 0 _iyiai(2&>2(0X+a\2()_ Yiidx
ivpapdx O 0
L,= 0 [ 7335(9)2( Yst2
0 Yiky  —iviadi
N@ andN® are the nonlinear terms. N as—a _,
At O(¢) we find that (9 +Uc 0 S =(u—1)S. +i—5—ViS,
0 Alzifke+ 2o v el s
vih=| 1 Ai(X,Y,Tl,Tz)ei(k§x+w§To), I K¢ %a Ayt ay| Sy
1 —[N|S. [+ (N+CH)|S_]2]S", (A7)
where we take the convention of writing a—a
_ . . . Ys 12
A+ei(kcix+wciT0):A+ei(kc+x+w;rT0)+Aiei(k;x+w;To)_ (9 +Uc d)S-=(u—1)S_+i 2 Vis-
2
Applying the solvability condition at orded(e2) leads to —A[Zi Ko+ % o2 S
+ a5+ ai 2 _ 2 —
drA-=_||[ai—aslke = —5—|IxAx —[N[S_[*+(N+C7)[S,[?]S",  (A8)
i , where
+ E(as—ai)aYAt , (AB)
T: Yst Vi
wherer=(ys+ v;)/2ysy; - 2ysy;
The equation at this order has then a solutigf)
=(B,,A,,0)", where N ., asta
UE:(aS—ai)kE/T‘l' 2—7_
ALl
2=~ i asa;t+a«a
TS =+ (a,-a)VDl2rat oy
ypAiAz';ei[(tk;rIk;)x+(twgiw;)T0]
_ _ - — ,
Yot il Yphpt vpap(kd —ko )2+ (o Fo,)] _1/ a
o . 2 Vst Vi
(7i+ ¥9)AS =[ — (2ak + a)dx+iadf]A. ek Xt ocTo),
1
Similarly, applying the solvability condition @(&?) yields, =—
in terms of the original space and time variables, 1+4A
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1 2, ysYi asai+ajas \D |’ 7(9i+Ugd)S-=(u—1)S_+(dy +id2) 35S-
—=1+[A,+D—F _— .
- a7 a a —[N|S_|?+(N+C7)|S;]?]S_
Notice that, by dropping aly derivatives in the above (A10)

amplitude equations, one gets their 1D version, parallel to
the walkoff directionx, as

with:
70+ Ug 39S, = (u—1)S, +(dy +id) 97S,
—[NIS.|?+(N+C")|S_|Is, , _etdan L Ba
(A9) " 2(yst ) *2
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